Problems of Enumeration and Realizability on Matroids, Simplicial Complexes, and Graphs

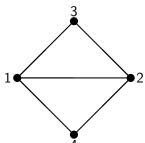
Yvonne Kemper August 6, 2014

Definition

A graph G = (V, E) is a set of vertices $V = \{v_1, \dots, v_n\}$ and a set of edges $E = \{v_i v_j : v_i, v_j \in V\}$.

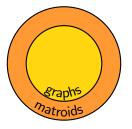
Example

Here is a graph!



$$G = (V, E)$$

$$= (\{1, 2, 3, 4\}, \{12, 13, 14, 23, 24\})$$



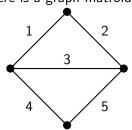
Definition

A matroid $M = (E(M), \mathcal{I}(M))$ consists of a ground set E(M) and a family of subsets $\mathcal{I}(M) \subseteq 2^{E(M)}$ called independent sets such that

- (1) $\emptyset \in \mathcal{I}$;
- (2) if $I \in \mathcal{I}$ and $J \subset I$, then $J \in \mathcal{I}$; and
- (3) if $I, J \in \mathcal{I}$, and |J| < |I|, then there exists some $e \in I \setminus J$ such that $J \cup \{e\} \in \mathcal{I}$.

Example

Here is a graph matroid!

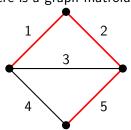


$$M = (E(M), \mathcal{I}(M))$$

$$= (\{1, 2, 3, 4, 5\}, \{\emptyset, 1, 2, 3, 4, 5, 12, 13, 14, 15, 23, 24, 25, 34, 35, 45, 124, 125, 134, 135, 145, 234, 235, 245\})$$

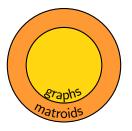
Example

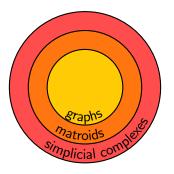
Here is a graph matroid!



$$M = (E(M), \mathcal{I}(M))$$

$$= (\{1, 2, 3, 4, 5\}, \{\emptyset, 1, 2, 3, 4, 5, 12, 13, 14, 15, 23, 24, 25, 34, 35, 45, 124, 125, 134, 135, 145, 234, 235, 245\})$$





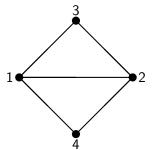
Definition

An (abstract) simplicial complex Δ on a vertex set V is a set of subsets of V. These subsets are called the faces of Δ , and we require that

- (1) for all $v \in V$, $\{v\} \in \Delta$, and
- (2) for all $F \in \Delta$, if $G \subseteq F$, then $G \in \Delta$.

Example

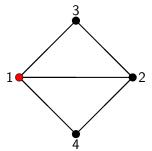
Here is a graph matroid simplicial complex!



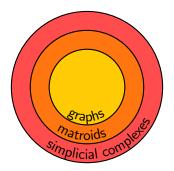
$$\begin{array}{rcl} \Delta & = & (V,F) \\ & = & (\{1,2,3,4\},\{\emptyset,1,2,3,\\ & & 4,12,13,14,23,24\}) \end{array}$$

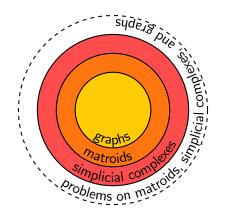
Example

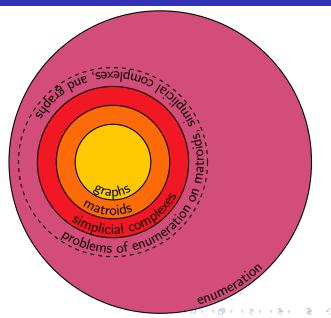
Here is a graph matroid simplicial complex!

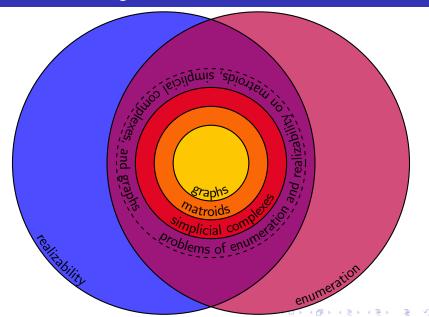


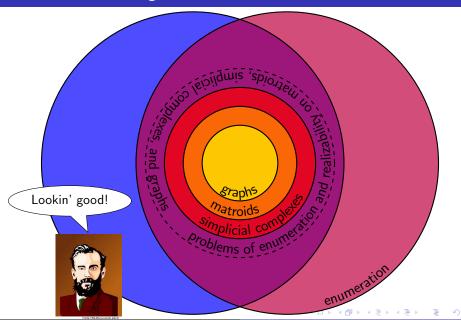
$$\begin{array}{rcl} \Delta & = & (V, F) \\ & = & (\{1, 2, 3, 4\}, \{\emptyset, 1, 2, 3, 4, 12, 13, 14, 23, 24\}) \end{array}$$











The Problems Three

- ► *h*-Vectors of Small Matroids
- ► Flows on Simplicial Complexes
- Polytopal Embeddings of Cayley Graphs

h-Vectors of Small Matroids

Simplicial Complexes: a Few More Definitions

Definition

The dimension of a face F is |F|-1, and the dimension of Δ is $d=\max\{|F|:F\in\Delta\}-1$.

Definition

A simplicial complex is **pure** if all maximal elements of Δ have the same cardinality.

In this case, a **facet** is a maximal face, a **ridge** is a face of one dimension lower.

Faces: A Natural Quantity to Measure

▶ The *f*-vector of a simplicial complex Δ , dim $\Delta = d - 1$, is

$$f(\Delta) := (f_{-1}(\Delta), f_0(\Delta), \dots, f_{d-1}(\Delta)),$$

where
$$f_i(\Delta) := |\{F \in \Delta : \dim F = i\}|$$
.

Faces: A Natural Quantity to Measure

▶ The *f*-vector of a simplicial complex Δ , dim $\Delta = d - 1$, is

$$f(\Delta) := (f_{-1}(\Delta), f_0(\Delta), \ldots, f_{d-1}(\Delta)),$$

where $f_i(\Delta) := |\{F \in \Delta : \dim F = i\}|$.

▶ The *h*-vector, $h(\Delta) := (h_0(\Delta), \dots, h_d(\Delta))$, is given by:

$$\sum_{j=0}^d h_j(\Delta) \lambda^j = \sum_{i=0}^d f_{i-1}(\Delta) \lambda^i (1-\lambda)^{d-i}.$$

Characterizations of *f*- and *h*-Vectors

Definition

Given two integers k, i > 0, write

$$k = \binom{n_i}{i} + \binom{n_{i-1}}{i-1} + \cdots + \binom{n_j}{j},$$

where $n_i > n_{i-1} > \cdots > n_j \ge j \ge 1$. Define

$$k^{(i)} = \binom{n_i}{i+1} + \binom{n_{i-1}}{i} + \cdots + \binom{n_j}{j+1}.$$

Theorem (Schützenberger, Kruskal, Katona)

A vector $(1, f_0, f_1, \dots, f_{d-1}) \in \mathbb{Z}^{d+1}$ is the f-vector of some (d-1)-dimensional simplicial complex Δ if and only if

$$0 < f_{i+1} \le f_i^{(i+1)}, \quad 0 \le i \le d-2.$$

Other Characterizations?

Question

Can we characterize subclasses of simplicial complexes?

Example

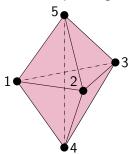
- ► Cohen-Macaulay complexes
- Flag complexes
- Shifted complexes
- Independence complexes of matroids

Matroid Complexes: An Example

Let *M* be given by:

$$\mathcal{I}(M) = \{\emptyset, \\ 1, 2, 3, 4, 5, \\ 12, 13, 14, 15, 23, \\ 24, 25, 34, 35, 45, \\ 124, 125, 134, 135, \\ 145, 234, 235, 245\}$$

The corresponding complex:



Then: f(M) = (1, 5, 10, 8) and h(M) = (1, 2, 3, 2).

O-Sequences

lacktriangle A non-empty set of monomials ${\mathcal M}$ is a **multicomplex** if

$$m \in \mathcal{M}$$
 and $n|m \Rightarrow n \in \mathcal{M}$.

- ▶ A sequence $h = (h_0, h_1, ..., h_d)$ of integers is an *O*-sequence if there exists a multicomplex with precisely h_i monomials of degree i.
- ► An O-sequence is pure if all maximal elements have the same degree.

O-Sequences

lacktriangle A non-empty set of monomials ${\mathcal M}$ is a **multicomplex** if

$$m \in \mathcal{M}$$
 and $n|m \Rightarrow n \in \mathcal{M}$.

- ▶ A sequence $h = (h_0, h_1, ..., h_d)$ of integers is an *O*-sequence if there exists a multicomplex with precisely h_i monomials of degree i.
- An O-sequence is pure if all maximal elements have the same degree.

Example

Let $M = \{1, x_1, x_2, x_1x_2, x_1^2, x_2^2, x_1x_2^2, x_1^2x_2\}$. Then, the corresponding (pure) *O*-sequence is:

$$O(M) = (1, 2, 3, 2).$$

Stanley's Conjecture

Conjecture (Stanley, 1977)

The h-vector of a matroid complex is a pure O-sequence.

Little progress was made for twenty years, but since 1997, the conjecture has been proved for matroids which are:

- of rank 4 (Klee, Samper),
- of rank less than or equal to 3 (Stokes, Há et al.),
- cographic (Biggs, Merino),
- lattice-path (Schweig),
- cotransversal (Oh),
- paving (Merino, et al.).

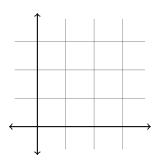
Results

Theorem (De Loera, K., Klee)

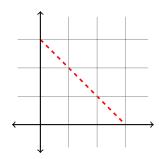
- ► Let M be a matroid of rank 2. Then h(M) is a pure O-sequence.
- ▶ Let M be a matroid of corank 2. Then h(M) is a pure O-sequence.
- ▶ Let M be a matroid of rank $d \ge 4$. Then, the subsequence $(1, h_1(M), h_2(M), h_3(M))$ of h(M) is a pure O-sequence.
 - ► Let M be a matroid of rank 3. Then h(M) is a pure O-sequence.
- ► Let M be a matroid on at most 9 elements. Then h(M) is a pure O-sequence.

An Experimental Result: Matroids on at Most Nine Elements

- Royle and Mayhew generated list of all matroids on at most nine elements - why not check them all?
- ▶ Used database to generate all *h*-vectors for these matroids.
- Generated list of all possible O-sequences of multicomplexes (up to maximal degree 9 on at most 9 variables), then checked that every h-vector appeared on this list.

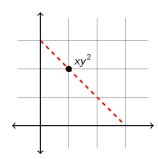


1. Pick a point $(a, b) \in \mathbb{Z}^2$ on the hyperplane x + y = r, where r is the rank of the matroid.



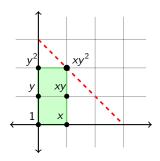
Let's say r = 3.

1. Pick a point $(a, b) \in \mathbb{Z}^2$ on the hyperplane x + y = r, where r is the rank of the matroid.



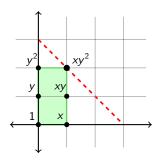
(a, b) corresponds to the monomial $x^a y^b$

1. Pick a point $(a, b) \in \mathbb{Z}^2$ on the hyperplane x + y = r, where r is the rank of the matroid.



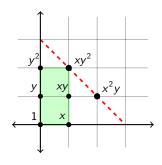
$$\mathcal{M} = \{1, x, y, xy, y^2, xy^2\}$$

- 1. Pick a point $(a, b) \in \mathbb{Z}^2$ on the hyperplane x + y = r, where r is the rank of the matroid.
- 2. Add all points in the shadow of (a, b) to the multicomplex.



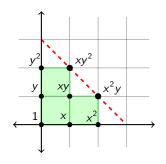
$$\mathcal{M}=\{1,x,y,xy,y^2,xy^2\}$$

- 1. Pick a point $(a, b) \in \mathbb{Z}^2$ on the hyperplane x + y = r, where r is the rank of the matroid.
- Add all points in the shadow of (a, b) to the multicomplex.
- Repeat as desired to generate all possible O-sequences (of rank 3 and corank 2).



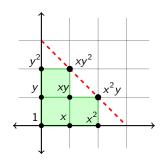
$$\mathcal{M} = \{1, x, y, xy, y^2, xy^2\}$$

- 1. Pick a point $(a, b) \in \mathbb{Z}^2$ on the hyperplane x + y = r, where r is the rank of the matroid.
- 2. Add all points in the shadow of (a, b) to the multicomplex.
- Repeat as desired to generate all possible O-sequences (of rank 3 and corank 2).



$$\mathcal{M} = \{1, x, y, xy, y^2, x^2, x^2y, y^2\}$$

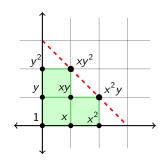
- 1. Pick a point $(a, b) \in \mathbb{Z}^2$ on the hyperplane x + y = r, where r is the rank of the matroid.
- Add all points in the shadow of (a, b) to the multicomplex.
- Repeat as desired to generate all possible O-sequences (of rank 3 and corank 2).



$$\mathcal{M} = \{1, x, y, xy, y^2, x^2, x^2y, y^2\}$$

- 1. Pick a point $(a, b) \in \mathbb{Z}^2$ on the hyperplane x + y = r, where r is the rank of the matroid.
- Add all points in the shadow of (a, b) to the multicomplex.
- Repeat as desired to generate all possible O-sequences (of rank 3)
 and corank 2).

The corresponding *O*-sequence is: (1,2,3,2).



$$\mathcal{M} = \{1, x, y, xy, y^2, x^2, x^2y, y^2\}$$

- 1. Pick a point $(a, b) \in \mathbb{Z}^2$ on the hyperplane x + y = r, where r is the rank of the matroid.
- 2. Add all points in the shadow of (a, b) to the multicomplex.
- 3. Repeat as desired to generate all possible *O*-seque :D (of rank 3) and corank 2).

The corresponding O-sequence is: (1,2,3,2).

Future Questions and Directions

- Cannot extend results directly, but can we use the geometric viewpoint to verify the conjecture for further classes of matroid complexes?
- Use PS-ear decomposability of matroid complexes?
- ► Characterize *f* and *h*-vectors for further classes of simplicial complexes, such as matroid polytopes?
- ► There is a list of all matroids on at most 10 elements can we find a counterexample here?

Flows on Simplicial Complexes

Flows on Graphs

Definition

A \mathbb{Z}_q -flow on an oriented graph G is a vector $\mathbf{x} \in \mathbb{Z}_q^E$ such that

$$\sum_{h(e)=v} x_e \equiv \sum_{t(e)=v} x_e \bmod q,$$

for all $v \in V$. A \mathbb{Z}_q -flow is **nowhere-zero** if it is fully supported.

Flows on Graphs

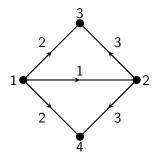
Definition

A \mathbb{Z}_q -flow on an oriented graph G is a vector $\mathbf{x} \in \mathbb{Z}_q^E$ such that

$$\sum_{h(e)=v} x_e \equiv \sum_{t(e)=v} x_e \bmod q,$$

for all $v \in V$. A \mathbb{Z}_q -flow is **nowhere-zero** if it is fully supported.

Equivalently, a nowhere-zero \mathbb{Z}_q -flow is a fully-supported element of the kernel mod q of the signed incidence matrix of the graph.



	12	13	14	23	24
1	-1	-1	-1	0	0
2	1	0	0	-1	-1
3	0	1	0	1	0
4	0	-1 0 1 0	1	0	1

(1,2,2,3,3) is a nowhere-zero $\mathbb{Z}_5\text{-flow}$ and an element of the kernel (mod 5) of the incidence matrix.

Graph Flows: Origins and Open Questions

- Flows originally defined in the context of electric circuits and networks
- Some Previous Work:
 - ▶ The number of nowhere-zero \mathbb{Z}_q -flows on a graph is a polynomial in q.
 - ▶ For a planar graph G, $\chi_G(k) = k^{c(G)} \phi_{G^*}(k)$.
 - ► The Max-Flow/Min-Cut problem of optimization.
- Open Questions:
 - ► 5-flow conjecture
 - Volumes of flow polytopes

Boundary/Incidence Matrices

Definition

Let ∂ be a boundary map on a (d-1)-dimensional complex Δ given by:

$$\partial[v_{i_0}\cdots v_{i_r}]=\sum_{j=0}^r(-1)^j[v_{i_0}\cdots\widehat{v_{i_j}}\cdots v_{i_r}],$$

where $0 \le r \le d$. The **boundary matrix** of Δ is given by the signs of the ridges in the boundary maps of the facets. We denote this matrix $\partial \Delta$.

Boundary/Incidence Matrices

Definition

Let ∂ be a boundary map on a (d-1)-dimensional complex Δ given by:

$$\partial[v_{i_0}\cdots v_{i_r}]=\sum_{j=0}^r(-1)^j[v_{i_0}\cdots\widehat{v_{i_j}}\cdots v_{i_r}],$$

where $0 \le r \le d$. The **boundary matrix** of Δ is given by the signs of the ridges in the boundary maps of the facets. We denote this matrix $\partial \Delta$.

The boundary matrix of an oriented graph is equal to its signed incidence matrix.

Boundary/Incidence Matrices

Definition

Let ∂ be a boundary map on a (d-1)-dimensional complex Δ given by:

$$\partial[v_{i_0}\cdots v_{i_r}]=\sum_{j=0}^r(-1)^j[v_{i_0}\cdots\widehat{v_{i_j}}\cdots v_{i_r}],$$

where $0 \le r \le d$. The **boundary matrix** of Δ is given by the signs of the ridges in the boundary maps of the facets. We denote this matrix $\partial \Delta$.

The boundary matrix of an oriented graph is equal to its signed incidence matrix.

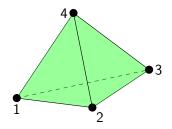
Definition

A \mathbb{Z}_q -flow on a pure simplicial complex Δ is an element of the kernel mod q of the boundary matrix of Δ .

Flows on Simplicial Complexes

Example

The surface of a tetrahedron.



	123	124	134	234
12	1	1	0	0
13	-1	0	1	0
14	0	-1	-1	0
23	1	0	0	1
24	0	1	0	-1
34	0	0	1	1

An example of a \mathbb{Z}_4 -flow is: (1,3,1,3).

Proposition (Beck, K.)

Let Δ be a triangulation of a manifold, and let $\phi_{\Delta}(q)$ be the number of nowhere-zero \mathbb{Z}_q -flows on Δ . Then,

$$\phi_{\Delta}(q) = \begin{cases} 0 & \textit{if } \Delta \textit{ has boundary;} \\ q-1 & \textit{if } \Delta \textit{ is without boundary, } \mathbb{Z}\text{-orientable;} \\ 0 & \textit{if } \Delta \textit{ is without boundary, non-}\mathbb{Z}\text{-orientable, } q \textit{ odd;} \\ 1 & \textit{if } \Delta \textit{ is without boundary, non-}\mathbb{Z}\text{-orientable, } q \textit{ even.} \end{cases}$$

Definition

A function ϕ in an integer variable t is a **quasipolynomial** if there exists an integer k > 0 and polynomials $p_0(t), \ldots, p_{k-1}(t)$ such that

$$\phi(t) = p_j(t)$$
 if $t \equiv j \mod k$.

The minimal such k is the **period** of φ .

Definition

A function ϕ in an integer variable t is a **quasipolynomial** if there exists an integer k > 0 and polynomials $p_0(t), \ldots, p_{k-1}(t)$ such that

$$\phi(t) = \rho_j(t)$$
 if $t \equiv j \mod k$.

The minimal such k is the **period** of φ .

Example

Let $\phi(t)$ be defined for $t \in \mathbb{Z}$ as follows:

$$\phi(t) = \begin{cases} t^2 + 1 & \text{if } t \equiv 0 \text{ mod } 5\\ t - 4 & \text{if } t \equiv 1, 3 \text{ mod } 5\\ 3t^3 + \frac{1}{2}t & \text{if } t \equiv 2 \text{ mod } 5\\ 0 & \text{if } t \equiv 4 \text{ mod } 5. \end{cases}$$

Then $\phi(t)$ is a quasipolynomial with period 5.

Theorem (Beck, K.)

The number $\phi_{\Delta}(q)$ of nowhere-zero \mathbb{Z}_q -flows on Δ is a quasipolynomial in q. Furthermore, there exists a polynomial p(x) such that $\phi_{\Delta}(k) = p(k)$ for all integers k that are relatively prime to the period of $\phi_{\Delta}(q)$.

Theorem (Beck, K.)

- Let q be a sufficiently large prime number, and let Δ be a simplicial complex of dimension d. Then the number $\phi_{\Delta}(q)$ of nowhere-zero \mathbb{Z}_q -flows on Δ is a polynomial in q of degree $\dim_{\mathbb{Q}}(\widetilde{H}_d(\Delta;\mathbb{Q}))$.
- ▶ In particular, $\phi_{\Delta}(q) = (-1)^{|E(M)|-rk(M)} T_M(0,1-q)$, where M is the matroid given by the columns of $\partial \Delta$.

Definitely Quasipolynomials: The Klein Bottle

Example

Let *K* be the Klein bottle. Then:

$$H_2(K; \mathbb{Z}_q) = \begin{cases} \mathbb{Z}_2 & q \text{ even} \\ 0 & q \text{ odd.} \end{cases}$$

Therefore:

$$\phi_{\mathcal{K}}(q) = \begin{cases} 1 & q \text{ even} \\ 0 & q \text{ odd}; \end{cases}$$

 $\phi_K(q)$ is a quasipolynomial with period 2.

The Period of the Flow Quasipolynomial

Definition

A matrix is **totally unimodular** (TU) iff every subdeterminant is 0, 1, or -1.

Fact

If the boundary matrix of a simplicial complex Δ is TU, then $\phi_{\Delta}(q)$ has period 1.

The Period of the Flow Quasipolynomial

Definition

A matrix is **totally unimodular** (TU) iff every subdeterminant is 0, 1, or -1.

Fact

If the boundary matrix of a simplicial complex Δ is TU, then $\phi_{\Delta}(q)$ has period 1.

Theorem (Dey, Hirani, Krishnamoorthy)

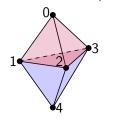
For a finite simplicial complex Δ of dimension greater than d-1, the boundary matrix $[\partial_d]$ is totally unimodular if and only if $H_{d-1}(L,L_0)$ is torsion-free for all pure subcomplexes L_0,L in Δ of dimensions d-1 and d respectively, where $L_0 \subset L$.

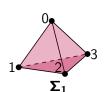
Convex Ear Decomposable Simplicial Complexes

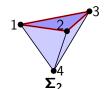
Definition

A **convex ear decomposition** of a pure rank-d simplicial complex Δ is an ordered sequence $\Sigma_1, \Sigma_2, \ldots, \Sigma_n$ (the **ears**) of pure rank-d subcomplexes of Δ such that

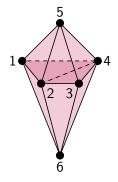
- (1) Σ_1 is the boundary complex of a simplicial d-polytope, while for each $i=2,\ldots,n,$ Σ_i is a (d-1)-ball which is a (proper) sub-complex of the boundary complex of a simplicial d-polytope, and
- (2) For $i \geq 2$, $\Sigma_i \cap \left(\bigcup_{j=1}^{i-1} \Sigma_j\right) = \partial \Sigma_i$.



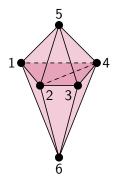




CED But Not TU



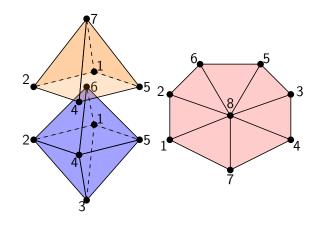
CED But Not TU



$$\phi_{\Delta}(q) = (q-1)(q-2)$$

BUT the period is still equal to 1 – perhaps there is hope...?

CED, Not TU, and p > 1



$$\phi_{\Delta}(q) = q^3 - 7q^2 + 15q - 8 - \gcd(2, q)$$

Open Questions and Future Directions

- Topological Conditions
 - Necessary and/or sufficient topological conditions for period equal to 1?
 - ► Necessary and/or sufficient topological conditions for period greater than 1?
- ▶ The Period of the Flow Quasipolynomial
 - Is there a bound for quasipolynomials from modular flows?
 - ► Can we find a subcomplex that guarantees a period greater than 1 – or is there always the possibility of period collapse?
- Constructions preserving/leading to polynomiality
- ▶ Families of simplicial complexes with p = 1?
- ▶ Relationship between $\phi_G(q)$ of a graph G and $\phi_{\Delta(G)}(q)$?

Polytopal Embeddings of Cayley Graphs

Cayley Graphs

Definition

Let Γ be a group, and Δ a set of generators of Γ . The **Cayley** color graph, $C(\Gamma, \Delta)$, of (Γ, Δ) is a directed, edge-colored graph such that:

- its vertices are the elements of Γ, and
- ▶ there is directed edge colored h from g_1 to g_2 if there exists a generator $h \in \Delta$ such that $g_1h = g_2$.

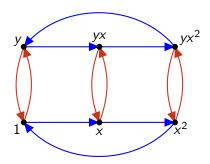
If we forget the colors and directions of the edges of $C(\Gamma, \Delta)$, we have the Cayley graph, $G(\Gamma, \Delta)$.

Remark

A group will have many Cayley graphs, which depend on the representation that is used.

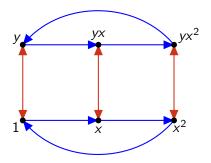
Say we have a representation of a group

$$\Gamma = \langle x, y \mid xy = yx, \ x^3 = y^2 = 1 \rangle$$
. The Cayley color graph is:

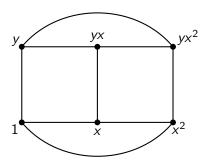


Say we have a representation of a graph

$$\Gamma = \langle x, y \mid xy = yx, \ x^3 = y^2 = 1 \rangle$$
. The Cayley color graph is:



Say we have a representation of a graph $\Gamma = \langle x,y \mid xy = yx, \ x^3 = y^2 = 1 \rangle$. The Cayley graph is:



The Genus of a Cayley Graph

Definition

The **genus** of a graph is the minimal genus of all orientable surfaces in which G can be embedded.

Definition

The **genus** of a group Γ , $\gamma(\Gamma)$, is the minimal genus among the genera of all possible Cayley graphs of Γ .

The Genus of a Cayley Graph

Definition

The **genus** of a graph is the minimal genus of all orientable surfaces in which G can be embedded.

Definition

The **genus** of a group Γ , $\gamma(\Gamma)$, is the minimal genus among the genera of all possible Cayley graphs of Γ .

Open Problem!

Classify all finite groups of a particular genus γ , for all $\gamma > 2$.

Finite Groups of Genus 0, 1, and 2

► **Genus 0:** Classified by Maschke (1896)

▶ **Genus 1:** Classified by Proulx in her thesis (1978)

▶ **Genus 2:** Just one of them, found by Tucker (1984)

$$\langle x, y, z \mid x^2 = y^2 = z^2 = 1,$$

 $(xy)^2 = (yz)^3 = (xz)^8 = 1,$
 $y(xz)^4 y(xz)^4 = 1 \rangle$

Finite Groups of Genus 0, 1, and 2

► Genus 0: Classified by Maschke (1896)

▶ **Genus 1:** Classified by Proulx in her thesis (1978)

▶ **Genus 2:** Just one of them, found by Tucker (1984)

$$\langle x, y, z \mid x^2 = y^2 = z^2 = 1,$$

 $(xy)^2 = (yz)^3 = (xz)^8 = 1,$
 $y(xz)^4 y(xz)^4 = 1 \rangle$

Finite Groups of Genus 0

Question

When is there a polyhedral embedding of a planar group?

Hold Up: Connectivity? and Other Definitions

Definition

- ▶ A separator S of a graph G is a subset of the vertices V such that $V \setminus S$ has at least two components.
- ► A *k*-separator is a separator of cardinality *k*.
- ▶ A graph is k-connected if there exist no separators of cardinality $\leq k 1$.

Question

When is there a polyhedral embedding of a planar group?

Question

When is there a polyhedral embedding of a planar group?

▶ Fact 1: (Steinitz, 1922) A graph is the 1-skeleton of a polyhedron iff it is 3-connected and planar.

Question

When is there a polyhedral embedding of a planar group?

- ▶ Fact 1: (Steinitz, 1922) A graph is the 1-skeleton of a polyhedron iff it is 3-connected and planar.
- ▶ Fact 1+: (Mani, 1971) Every 3-connected, planar graph *G* is the 1-skeleton of a polyhedron *P* such that every automorphism of *G* is induced by a symmetry of *P*.

Question

When is there a polyhedral embedding of a planar group?

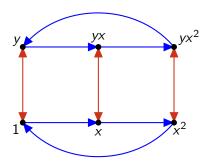
- ▶ **Fact 1:** (Steinitz, 1922) A graph is the 1-skeleton of a polyhedron iff it is 3-connected and planar.
- ▶ Fact 1+: (Mani, 1971) Every 3-connected, planar graph *G* is the 1-skeleton of a polyhedron *P* such that every automorphism of *G* is induced by a symmetry of *P*.

Proposition (De Loera)

Let $G(\Gamma, \Delta)$ be a planar Cayley graph for the group Γ . Then $G(\Gamma, \Delta)$ can be embedded as the 1-skeleton of a polytope.

An Example

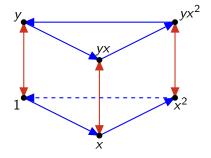
Say we have a representation of a graph $\Gamma = \langle x,y \mid xy=yx,\ x^3=y^2=1 \rangle$. The polytonal embedding of the Cayley color graph is...?



It is 3-connected, and it is clearly planar...

An Example

Say we have a representation of a graph $\Gamma = \langle x,y \mid xy=yx,\ x^3=y^2=1 \rangle$. The polytonal embedding of the Cayley color graph is:



A Natural Question

Question

For any group Γ , and any representation Δ , can we always find a convex polytope such that $G(\Gamma, \Delta)$ is its 1-skeleton?

A Natural Question

Question

For any group Γ , and any representation Δ , can we always find a convex polytope such that $G(\Gamma, \Delta)$ is its 1-skeleton?

Let's find out...

The Quaternions: Q_8

One presentation of Q_8 is:

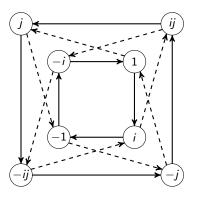
$$\Delta = \langle i, j \mid i^4 = 1, i^2 = j^2, j^{-1}ij = i^{-1} \rangle.$$

The Quaternions: Q_8

One presentation of Q_8 is:

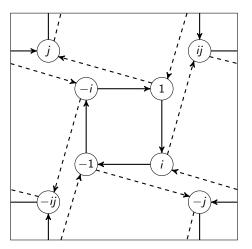
$$\Delta = \langle i, j \mid i^4 = 1, i^2 = j^2, j^{-1}ij = i^{-1} \rangle.$$

This has the corresponding Cayley color graph:



Q₈ has Genus 1

We can embed this Cayley color graph on a Torus:



A Natural Question: Let's be specific, here.

Question

Can Q_8 be embedded as the 1-skeleton of some convex polytope?

A Natural Question: Let's be specific, here.

Question

Can Q_8 be embedded as the 1-skeleton of some convex polytope?

Theorem

Nope!

A Natural Question: Let's be specific, here.

Question

Can Q_8 be embedded as the 1-skeleton of some convex polytope?

Theorem

Nope!

A More Honest Theorem

There exists no convex polytope P with G(P) equal to the Cayley graph of a **minimal** presentation of the quaternion group.

What's next?

- Are there (infinite) families of groups the minimal presentations of which cannot be embedded as the graphs of convex d-polytopes?
- Can we use group theory to characterize the embeddability of Cayley graphs?
 - Characterize subgroups that "block" the embedding of the Cayley graphs
 - Show that there exist no such subgroups
- Are there forbidden minor characterizations for the embeddability of Cayley graphs?
- ► Can we develop constructions that give *d*-polytopes with graphs equal to Cayley graphs?

Thank you!